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Using an averaging procedure two terms of the asymptotic form for the stress and strain state of a plane 

body with rapidly oscillating boundary T,(h) that imitates a rough surface are constructed. In the 

investigation of the boundary layer new boundary conditions arise on the limiting smooth contour 

To = r,(O). Two formulations of the problem are proposed, which take into account a correction term for 

the asymptotic form away from To and yield an approximation with increased accuracy O(h*) e.g. for the 

potential energy of the strains. The problem concerning the strains of a domain with a very winding crack is 

considered (under the assumption that the edges have no contact points). Near the tips of the crack there is 

an additional angular boundary layer, which, in particular, makes it necessary to specify longitudinal 

concentrated compressive forces at the tips of the limiting crack, which can be represented by a 

mathematical cut (the error in such a model of a winding crack amounts to O(h’) only). The balance of 

energy (in the framework of the Griffith hypothesis) for a developing crack provides a criterion for fracture 

involving the magnitude of the load (compression) along the crack. 

1. THE ASYMPTOTIC FORM OF THE STRESS AND STRAIN STATE IN THE VICINITY OF 

A ROUGH SURFACE 

LET fl be a domain in R* with boundary &I consisting of contours rO, . . . , rJ. Also let r0 be a 
smooth (of class Coo) simple closed arc of length lo, and let (n, S) be the natural local coordinates 
connected with that arc. We will denote by N a large natural number, and we will set 

To(h) = {(n, 8): SE 10, loI, n = h-y@, h-‘s)}, where h = ZoN-’ is a small parameter and 

YE Crn([O, loI x [O, 11) is a function periodic both in s and t = h-?s with periods lo and 1, 
respectively. The domain a(h) bounded by To(h) and rl, . . . , rJ has a rapidly oscillating rough 
boundary. We can reduce the characteristic dimension of fi to unity by scaling. Then the Cartesian 
coordinates x = (x1, x2), the coordinates (n, s), as well as lo and h become dimensionless. 

We will consider the following plane problem of the theory of elasticity: 

L (V,) uh (x) = &v,u” (x) + (h + p) V,V,.uh (x) = 0, x E Q (h) (1.1) 

d”)(uh;x) =-pi(x), xEri, i = 1,. . .,J (1.2) 

dnh) (u”; x) = -p” (s, h-4), x E r. (h) (1.3) 
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Here uh is the displacement vector, V, = grad, h and p, are the Lame coefficients, a(&) is the 
stress tensor, ufn) = on, n is the inward normal (with respect to a) unit vector to &F$‘,, nh is the 
normal unit vector to pa(h), p”, and p’, . . . , p” are the external loads (their principal vector and 
momentum are equal to zero) and POE C” ([0, lo] x [0, 11) is a periodic function. 

We shall find the asymptotic form of 1.8 as h-+0 using the well-known method of averaging (see 
[l-3] and other papers). Away from F,(h) the solution can be represented as a series 
v”(x) + hv’ (x) + . . . . In the vicinity of T’u(h) there occurs the effect of an exponential boundary layer 
determined by the solution of the problem in the domain II(s) = {q E R2 : n1 E (0, I), q2 > y (s, 3, )}, 
which depends on the parameter SE [0, lo]. The boundary layer can be sought in the form 
hw1(s,+th2W*(S,r))+. , .) where q1 = K’s, -rl = h-‘n. The function vk satisfies the equations 

L (V,J vth-) (x) = 0. x e 61 

of”) (v(Q; x) 2 -8,. “pi fx), x F Pi, i = t, . . ., J (1.4) 

The boundary conditions for vk on p. can be obtained by studying the problem concerned with the 
boundary layer. We substitute the sum v” + hw’ into (1.1) and (1.3). Collecting the factors of h- ’ in 
(1.1) and ho in (1.3), we obtain the following relations, which we supplement by adding the 
periodicity conditions for w1 with respect to n1 E [0, 11: 

L (Vrl) w1 (s. q) = 0. rj E II (s) (1.5) 

r(Y) (20’; s, q) = -p” (s, ‘1) - u (UO, s, 0) v (s, q), q E n (s) (WI 

(d’FWliaQ) (s, 0, qz) = (dkw’/d?Q) (s, 1, Q),Q > y (s, O), k = 0,1 (1.7) 

Here Y is the inward normal unit vector to the face T(S) = {q: nr E[O, 1], Q = r($, ~1)) of the 
“half-strip” XI(s), T (WI) is the stress tensor computed by regarding n as Cartesian coordinates, and 
a(v* ; s, 0) are the values of 7 (v” : x) on I’, . The conditions for the existence of a solution of the 
problem that vanishes exponentially at infinity (the vanishing principal load vector) have the form 

u(l’) (v”: s) = -PO (s), x E ro (1.8) 

Here P’(s) is the principal vector P”(s, *) on the arc T(S). 
The second term v(t) of the outer expansion satisfies (1.4), and the boundary conditions on Pe can 

be obtained by considering the term w2 of the boundary layer type. To simplify the formulae, we 
assume that the contour To(h) is free of stress [i.e. p” = 0 in (1.3)]. Then, taking into account the 
homogeneous conditions (1.3), we find that (1.6) takes the form T(“)(w’) = -u~.~(v~)(u~, 0) on 
IT(S). We denote by W(s, q) the solution of (1.5) that satisfies conditions (1.7) and the equality 

Z@‘) (W; s, n) == - (pvr (s, q), O)? lj E n (s) 

It is obvious that w1 = p-’ Wa,,(v*). We introduce the non-negative number 

E (W; IT (s)) = - \ 
.7*(s) 

r(v) (it’). I\, d2, %Z /GA-lb (s) 

(1.9) 

b(S) = ~-2(2y + A)-’ i \ (z(p + h)zjr(~~)"--h7jj(W)Zitk(W))dq 

j. 7i=l nis) 
(1.10) 

A -= + (,u + h) (2u -+ h)-1 

We also introduce the matrix-valued differential operators L’, T, and B defined by the equalities 
(k(s) is the curvature of the contour at s) 
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L1 = 

2 (A + 2~) W - pkd, (h + p) (Dd, - kd,) 

(h + u) (Da, + kd,) 2uDa, - (h + 2~) kd, 

B = 
3, W~*dn - Ys Wn -(2P +- h) k) 

:;;$-‘;;c?:: k) (2~ -+ h) ya (d,, -k) - hyhd 8 II * II - n -pc~y d I/ 8 * 

pk (I - yd,) -- (2p f 1”) yili f uLd, - hyj3, 

T= 
- (2y + 3L) (Y# - YSd,) 

Ad, - !'(S& + Y&v - h.k - (au + h) kyd,- 

- P (Y@ + r,8,) 

We substitute the sum v”+h(v’+w’)+h2w2 into (1.1) and (1.3), and we collect the factors 
multiplying ho and h’, respectively. Taking (1.4)-( 1.8) into account, we find that w2 can be obtained 
from (1.7) and the equations 

L (0,) w* (s, ‘1) = -Ll (I], s, c,, a,) w1 (s. I]), q E n (s) (1.11) 

+‘) (w’; s, q) = -T (11, s, Yq, 3,) w1 (s, 11) - o (\.I; s, 0) v (S, rl) + 

+ R (n. s. a,, a,) v” (s, 0) (1.12) 

Using the Betti formula, it can be established that problem (1 .ll), (1.12), (1.7) is solvable in the 
class of functions that vanish at infinity in the case when v(l) satisfies the boundary conditions 

a(“) (v(l); X) = d, {(m (s) -+ b (s)) CT,, (v”; x) s}, x E To (1.13) 

m W = 1 Y hrll) drll (1.14) 
0 

Here s is the unit tangent vector corresponding to the positive orientation of TO, and b is defined by 
(1.10). 

To determine b(s), we have to solve problems (1.5), (1.7), (1.9) concerned with the deformation 
of the domain II(s). If y(s, q) = 8yo(s, q), where 0~6 is a small parameter, i.e. II(s) differs little 
from the half-strip, then one’can derive the asymptotic formula 

b (s) = 6h jJl [2nj (2 p _t IL)]-] (C,j’ + C2j’) + 0 (6') 

in which cli and c2j are the coefficients of the Fourier expansion of the function q--, (ay /an,) (s, qi) 
in cosjqr and sinjqi . 

2. THE “EQUIVALENT” PROBLEM IN A DOMAIN WITH A REGULARLY PERTURBED 

BOUNDARY 

We will assume that y is independent of the fast variable h-Is, i.e. y(s, h-‘s) = y, (s), and we will 
consider a domain with regularly perturbed boundary (without oscillations). All the computations 
of the previous section remain valid, but become simpler, since there are no terms of the 
boundary-layer type. In particular, (1.10) and (1.14) are equal to 0 and y, (s), respectively. 
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Therefore, the sum m + b in the boundary condition (1.13) can be replaced by y, . Thus, as in 141, it 
is possible to find a problem in a domain with regularly perturbed boundary that is asymptotically 
equivalent to problem (l.l)-(1.3) [with accuracy 0(H2)]. In other words, one can take the 
roughness of the surface into account by constructing a smooth surface that is equivalent in a certain 
sense. 

We denote by fi, the domain bounded by the contours Ioh = {x: sE [0, lo), n = h(m(s) + b (s))} 
and Ii, . . . , r,, and we consider the problem concerning the deformation of R* under the action of 
the loads p” = 0, p’, . . . , p” (it is assumed that there are no loads on To(h) or IOh). According to 
what has been said above, the solution u* of the problem in question is identical with the solution uh 
of (l.l)-(1.3) with accuracy 0(h2) outside a neighbourhood of IO. Hence, in particular, we obtain 
the relation 

u (u”; R (12)) = ‘;JzF (u”: L,_ (IL)) - 1 p. llft ds = - 1,/Z 1 pd as = 
fiQ(h) aa(rl) 

=- I!, s p * u* t’s + 0 (A?) = u (u*; (2,) + 0 (h2) 
8Q* 

(2.1) 

for the strain energy. 
In turn, the latter relation means that the frequencies o1 (h) 6 co2 (h) s . . . and wl* c 02* c . . . of 

the characteristic oscillations of a(h) and R* satisfy the inequalities 1 wJ(h) - wj* 1 <cjh2, where 
j=l,2 . . . 

Another way of constructing the problem involving two terms of the asymptotic expansion 
consists in assigning some additional strain energy to F. . We shall show how this can be done. Since 
a(“)(~‘) = 0 on To, the equality (1.13) can be transformed into 

ocn) (v(r); x) = Aa, {(rrz (s) + b (s)) (d,v,O (x) - k (s) 0,’ (x)) s}, x E ro. 

The field v*, which approximates v co) + hv(l) with an error 0(h2), can now be defined as the 
solution of (1.4) with k = 0 that satisfies the boundary condition 

d”) (v*: x) - Aha, {(rn (s) + b (s)) (d,v,* (x) - k (es) u,,* (z)) 8) = 

-= 0. x5ro (2.2) 
Integrating by parts in a0 and on IO, we conclude have problem (1.4), (2.2) is equivalent to 

finding the minimum of the functional 

l,‘oE (v*; Q,) + l12_4h i . (nz -+ b) / d,u,* - ku,* I2 cis- dQi,r p.v* ds (2.3) 
0 0 0 

in the subspace {v* E W,’ (a,): as v,* - kv,* E L2 (I,)}. 
For the problem of minimizing the functional to be well posed, one has to require that the second 

term in (2.3) be non-negative. This gives rise to the constraint m + b 2 0 on To, which restricts the 
field of applications of the second formulation of the joint problem. It is, of course, possible to 
combine both methods, one involving regular perturbations of the boundary, and the other one 
based on specifying additional strain energy concentrated on IO. 

3. A DOMAIN WITH A CRACK WITH ROUGH EDGES (WITHOUT CONTACT POINTS) 

In the previous section To was assumed to be a contour with a smooth boundary. We shall now 
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FIG. 1. 

assume that l?e is the interval {x: x2 = 0,/x1 ) s al,}, whose edges we denote by I’,‘. Let us describe 
the contour I’,(h). Outside a neighbourhood of the end-points P" of r. the contour is given by the 
arcs To + (ta) = {x: x2 = +hy, (h-‘;ui)} , where y+ E C” ([0, 11) are one-periodic functions, 
0~ ~~(~) =y+ (t) + y_ (t) being the (initial) width of the crack. In the vicinity of P’ the contour 
l?,(h) can be obtained by shrinking the boundary 5’ by a factor of h-l (the enlarged end-point 
zone; see Fig. 1). The domain 2’ can be obtained by removing from R2 a domain that coincides 
with the set (6 = h-l (xi - &, x2): & < 0, t2 E k-y_, y+]} outside a circle of a large radius Ra . 8- 
can be defined analogously. If the crack developed along a winding path with no material crumbling 
away, then 8’ is a plane with a cut along a semi-infinite periodic curve. 

We denote by m, and 6+ the quantities (1.14) and (1.10) corresponding to the upper and lower 
edges r,‘(h) of the crack. The equalities (1.13) can be rewritten as follows: 

Since the stress field o(Y’) has root-type singularities at P*, the right-hand side of (3.1) increases, 
in general, as r_c-3’2 as r5+ 0. Here (r? , cp+ ) are the polar coordinates with centre P', 
qrt E (-IT, IT). This fact forces us to make the asymptotic form of uh more accurate and to construct 
an additional boundary layer near P’: 

zo* -!- /rltzl* + hz?t J._ , . . . (3.2) 

We shall restrict ourselves to considering a neighbourhood of P+ and we shall omit the indices It. 
The solution v. admits of the expansion 

vo (X) = (Cl - CO.Xl, 6 + corz) + GO/l-l (zr, -o%.) + r% (K,Q’ (cp) + 

+ KP (cp)) -t- 0 (r.“‘2). r -+ 0 (3.3) 

Here the first term is the rigid displacement, a0 is a constant, Kj are the stress intensity factors (SIF), 
and 

a = h (2u f A)-‘. x = (3p + A) (u + A)_‘, 

{QY1, @ql) (cp) = (4p)-l (2x)-‘!* ((2X - 1) cos l/+p -cos3i2(p, sin 3/Zrf - (2x $ 

+ 1) sin V2q). (O?‘. (P,:) (cp) = (4~)~’ (2n)-x(3sin 3/2’p - 

- (2x - 1) sin ‘iZv), 3~0s 3/Zcp - (2x + 1) cos lizcp) 

Using the method of joint expansions (see, for example, [5]) and comparing (3.2) with (3.3), we 
find 
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zo- (cl. cp), z1 (z) = K,Z' (5) + KzZ’ (5), 

z2 ($) -~ co (-42. El) + ooze (5) (3.4) 

The vector-valued functions Zk (5) are solutions of the problems 

L (GE) Z(k) (E) = 0. . F E 9, u(2) (Z(k); F) = 0, 5 E (YE (3.5) 

Zi@ (!) = p%@(q) (cp) + 0 (l), p + 00, q = I,2 (3.6) 

Z(O) (5) = .4-l (E,. -&) + 0 (P”)? p -+ @Zl (3.7) 

We shall make the asymptotic representations (3.6) and (3.7) more accurate. We first expand the 
vector-valued function Z”. A modification of the discussion in Sec. 1 yields 

z(O) (Q I= A-l (&. - a&t) ;- &T(l) (P, CF) -t X (El) r]p+W* (El -!- 0 (1) 
* 

T(l) (g) = (Tr t (I) ~2)) = [gnu]-l((x + 1) In r (cos cp, -sin cp) $ 

+((x--l)(~sincp, (x--i)cpcoscp-2sincp)) 

(3.8) 

(3.9) 

Here B. is a constant, x E C”(R) is the cut-off function equal to 1 for {r < -2R0 and 0 for .$r > -Ro, and W ’ 
are the solutions of problem (1.5), (1.7) and (1.9) in II’ = (5: [iE(O, l), +&>y&&)}. 

Let us compute the constant Bo. To do so, we substitute Z(O) and e’ into the Betti formula for the domain 

Q,,,nZ, where Qq,, is the square (5: I.$ <q + t} and q is a large natural number. As a result, taking (3.5) into 
account. we find that 

s ,-J(“) (Z(O); b).el dsE = 0 

aQ,,tm (3.10) 

In addition, we integrate (3.10) with respect to tE (0, l), and we pass to the limit as q-+ +m. Then, using the 
asymptotic expression (3.8), we neglect all infinitely small terms. We have 

=I_r.~dtaJ f el. u(“) (p’@(O) + &T(l)) ds5 + 

q. _ id, yl-f) 

ull @‘do)) d.$ - p-’ 2, _1-z i, dt ‘f 011 (W*) dt 
t 

0 -_7qc-q- f) e t:r(Lq--1) - 
We can find each of the integrals Ii, 12, and I* in the latter formula: 

II-: IdI 1 L (p’@(O) 1 &‘$‘)).e’dj = - & ‘dt ’ 
! \ 

6 (g) db = - Bo 

Q,,t 0 Q;.t 

f2 _ 5 iv+ (gl) -+ I’_ [gl)} dgl = [ ?;. (51) dF;l c % = m+ -i- m- 

n 0 
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As a result, we arrive at the equality I?,, = m. + b. . 
The asymptotic form with increased accuracy for the solutions Zck), k = 1,2 has the form 

ztk’ (g) = p’Wk) (cp) + p-x (BklW (cp) f B,,Y(‘) (rp)) + 

+ &k,2 {p-‘it (b)z trn* + b*) kV* (6) & %1 (,+@@) (q)) Istin + 
+ 

$- ‘/a~-% [(bo + m, - rn_)r(l) (111 P, T) f (m. + b+ - L) r(*) (cp)l) + 0 (p-*1, P -. 00 
(3.11) 

Here Bkj are constants depending on z:, which form a (2 X 2)-matrix B, and 

(‘I’?), ‘f$‘) (cp) = (8n)+ (1 + x)-l (3 cos ‘/a~ - (2% + i) coss/,cp, (2% - 1) Sin’/& - 

t2) -3 sinV,cp); (Yy, , Yg)) = (8n)-“’ (1 + x)- 1 ((2% + 1) sins/,9 - sin’/fl, 

(2% - i) c~s~,c~ - cosv,~); (r, , 0) r$ (in T, up) = [2 (2~)‘$1-1 (-2111 r x 

x (sin’/,cp - (2x + 1) sin3/,cp, cosl/,cp - (2x - 1) cos3/,cp) + (4 (x sinV,cp - ai+/& - 

--cp (cosV,cp + (2x j- 1) cosV’/,cp), 4 (x cosVg cp - cos Vz’p) + 9 (sinV,cp + (2% - 

--‘I) sirP,‘,cp))}; (rr , c2) rp) tcp) = 14~ (2~)‘~q-~(-~0~~~,cp - 

-(2x + 1) cos3/,cp, sinV,cp + (2x - 1) sins/,@ 

Using the Betti formula in the region Q4,r II E-applied to the vectors Z (4 and Z(j), one can establish that B is 
a symmetric matrix. 

Let us now return to considering the field v (I). Taking relations (3.4), (3.8), and (3.11) into 
account and equating the inner and outer expansions, we can find additional conditions that must be 
satisfied by the solutions of (1.4) and (3.1): 

2 
\r(l) (.T) = 

1 A 
_+ + _I 

j, t=l 
hj-Njkr_t V'"'(cp*) $ IJ$ (/no A 6,) T(l) (r+, & - 

+ 1, 2K2+rz,z [(b, + m, - m_) r(l) (111 r+-, cp*) + 
+ (~77~ - b, -b_) r@)(cp*)l + 0 (l), rf - ,0 (3.12) 

Here and henceforth we re-establish the indices + denoting the tips of the crack To. Using the 
general results of [6, 71, one can verify that problem (1.4), (3.1) and (3.12) is solvable [in other 
words, the load, which also includes the singular terms appearing on the right-hand side of (3.12), is 
self-balanced]. Note that the principal vector of the smooth load (3.1) is equal to (bo+mo) 

(UO’ - 
r 

a,--) and is compensated by the concentrated forces specified according to (3.12) at the tip of 

0. 
We shall determine the asymptotic behaviour of the potential energy U(uh; n(h)) of deformations. By 

analogy with Sec. 2, we find that 

u(u”;,(~),=u(v~;51)--‘:~~~ 1 p.yldsl( + 0 (h2) 
dR\“” 

To evaluate the latter integral, we will apply the Betti formula in rc1 with two discs Bg' of small radii and centres 
at P' removed. We have 

-& 1,/2 

- c 
o&* 

(,W(,wJ); x).yw _ &) (&); x).\.(o))d 
8x 
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Using (3.1), (3.3) and (3.13), we finally get 

U (uh; 0 (h)) _ U (~0; Q) - l/ah (mo + b0) n 
LL 

l 00%f* - 

It 

Here K,,,* , a~’ and cl* are the quantities for the right and left end-points of the crack appearing in (3.3). 

4. ENERGYBALANCEDURINGTHEDEVELOPMENTOFTHE CRACK 

Consider an elastic plane with a winding crack T,(h) subject to a biaxial load at infinity, that is, 
consider the problem 

L (C,) Uh (x) = 0. X E R2 \ r0 (h); a(“) @‘I; x) = 0, x E r. (h), (4-I) 

Ujj (U”; X) = pj -+ 0 (I X I-‘), j r= 1, 2, C112 (II”; X) = 0 (I X I-l), 1 XI --f CC (4.2) 

We will assume that the inequalities p2>0 and p1 <O are satisfied, which means that the crack is 
stretched in the transverse direction and compressed in the longitudinal direction. For such loads it 
is natural to assume that the edges of the crack do not touch each other. 

The solution v(O) of the limiting problem is known (see [S]). We will merely recall that 

011 (v(“); J1, 20) = 111 -p2~ K,* = (nZn)‘p,, K,* =O, Is,* = 

= Pl - Pz (4.3) 

We turn to the second term v (I) of the outer expansion. By virtue of (3.1) and (4.3), v(l) satisfies 
the relations 

L (C,) v(l) (x) = 0, x E R2 \ I’,,, ~3,~ (v(l); x) = oz3 (5(l); x) = 0. 

x E rn; (Jjk (\-(l), X) = o (I X I-l), 1 X 1 + W\ i, k = I, 2 (4.4) 

Therefore, v(l) is non-zero only as a result of the asymptotic conditions (3.12). Introducing some 
simplifying assumptions, we shall consider in more detail problems (3.5)-(3.7) concerned with the 
boundary layer. First, we shall assume that the initial width of the crack is zero, i.e. 
r(t)=~+(t) = -r_(t). Next, let y(t) = -r(t+&), i.e. let the crack have a bend symmetric with 
respect to the Ox1 axis. We introduce the domain Z(t) = R~\{x: x1 6 t, x2 = y (XI)} depending on 
the parameter t (Fig. 2). In view of the symmetry of the domain, the corresponding coefficient 
B21(t) in (3.11) satisfies the formula B21(t) = -B,,(t+1). Thus there exists a number toE[O, 1) 
such that BZ1 (to) = 0. Let us fix this location of the tip of the crack. Now, recalling the equalities 
m + = -m_ and b, = b_ = ibo, we conclude in accordance with (4.3) and (3.12) that formulae (4.4) 
should be supplemented by the condition 

v(l) (x) = BII (X&)” ~2 (2rdmxy (92) + bn (PI - ~2) T(l) (rrt, cp+) f 

+ 0 (i), r+ * 0 (4.5) 
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R_ 

FIG. 2. 

Therefore, v(l) = (87~fa)i’~p~ (c’ + CL) + (pi -p2) Go, where c* is a solution of the homogeneous 
problem (4.4) that is bounded outside any neighbourhood of the point (+&,, 0) and satisfies the 
condition C’(X) = r,-“‘*~(q+)+u(l) as rt+O (in other words, 5’ are weight functions; see [9, 

711, and where 5’ is a solution of the same problem that satisfies the condition 

L$‘(x) = T(l) (I++, cp*) + 0 (1) at both tips of the crack ra. The vector-valued functions <‘, i$ are 

determined by relations of the form [8] 

$ (z) = &I, a [T(l) (q + 1/tZO, q) - ‘I’(‘) (q - l/ate, ~a)1 + ‘I&-l ((x - 

1) Re 21~1~ (x) - 22s Im 21~ (x), (x + 1) Im Zl”la (z) - 29 Re 21~ (3~)) 
(4.6) 

- 

a = 0: _+; 2 = x1 + iq 

As before in Sec. 2, one can state the joint problem, the solution v* of which differs from the sum vfo) + hv(‘) 
by 0 (@) outside any neighbourhoods of the tips of l?e. This formulation consists in finding a displacement field 
v* that satisfies (4.1) and (4.2) in the limiting domain R*\I’o and belongs to the set 

D = Iv*: v* = v +-M,, (c+C+ + c-g-, + &,c,F, co, ck E R 

u1 (x) = u1 fzl, - a& 23 fx) = --v2 (~15 - ~2’13 co? cf e R 

v (x) = (a:, 0) +- c&Q (cp*) + A-‘c, (11, az2) + 0 (+h i’* - 0 

v (x) = (a;pzr, a;z2) + o (15 I-‘), I r 1 - 00; $3 $’ = RI 

A similar problem can be considered as an extension in the weight class of the operator of the original 
problem of elasticity theory for a plane weakened by a crack r0 (see [lo, 111, etc.). This makes it possible to 
state a correct definition of the energy functional for the joint problem (since the solution is singular, the 
standard de~nition is unsuitable~ involving an additional energy ~nt~bution associated with the tips of the 
crack. However, here we shall not dwell on unnecessarily rigorous definitions, since the discussion below is 
intuitively clear and admits of an obvious mechanical interpretation. 

We will consider the problem of increasing the length of r,,(h) by h (the bending period of the 
crack) at both ends. We will assume that the structure of the end zone remains unchanged, We 
denote the extended crack by r,‘(h) and the solutions of the corresponding problems by uhf, vi, etc. 
We assume Ipi -pi (1 (~2 ) to be a large parameter, so that the effect of the stretching the transverse 
field is of the same order as that of the compressing longitudinal field; in other words ip -pzff 
jpz / = O(h -1’2). We adopt the Griffith hypothesis on the balance of the increments of the surface 
energy and potential energy. Since the functionals U(u”; R2U70(h)) and U(uh' ; R2\r,‘(h)) are 
infinite, we consider discs DR of large radii R and we set 
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AIJ = B’_” {U (uh; DR \ ro’ (h)) - U (u”; DR \ ITo (h))) 

as in the Griffith problem [12]. 
By virtue of (4.2), the Betti formula, and what has been said above about the approximation of 

the solution uh of problem (4.1), (4.2) by the sum v (‘) + hv@) (or by the solution v* of the joint 
problem), we have 

AU = --'jn lim 5 (P ,n,,p,n,).(uh-uUI',)ds, = 
R-m Irl=R 

= - l/, lim c R-am js'=R 
(pllzl, pen,) '(v* - v*')ds, + 0 (h2) 

Substituting the solutions v(i) and v(j)’ already computed [formulae (4.3) and (4.6)] into the above 
formula, we find that 

AU = - (8p)-l h (1 + x) (&PZ2 + b0 (P, - Pi)“) + 0 (h2) 

According to Griffith, the increment AII of the surface energy is proportional to h and equal to 
4hq, which means that the energy criterion for fracture AU + AII G 0 (the criterion for triggering the 
expansion of the crack) is equivalent to the inequality 

- (8u)-i (1 + x) (J$P,~ + b, (pi - ~2)~) + 4~ ,< 0 (4.7) 

We turn our attention to the presence of the longitudinal component of the external load on the 
left-hand side of (4.7). If pi -p2 is not large and Ip1 -p2 14 h-“2 lp2 1, then the term just mentioned 
can be neglected. Then (4.7) takes the form of the Griffith energy criterion. The same effect 
involving the presence of the term p1 -p2 with a small multiplier is shared by the Novozhilov 
criterion [13], which consists in verifying the inequality 

d-l max s eVcp ds < G, 
IVl<n r(d, cc) 

(4.8) 

Here d is the structure of the medium, Y (d, cpo) denotes the interval {x : r E (0, d), cp = cpo}, and (T, 
is the theoretical strength limit. 

It is known (see e.g. [14]) that the substitution of the two terms [of order 0(r-“2) and O(l)] of 
the asymptotic expression for the stress into (4.8) imposes an upper limit on the sum p2 + cd”2 
(pl -p2 I. Thus relations (4.8) and (4.7) are asymptotically equivalent if d and h are small quantities 
of the same order. What has been said above confirms the long-standing opinion that the parameter 
d is connected with the grain size p of the medium: if crack develops avoiding the grains, then the 
period h of y is also proportional to p. 

In the description of the shape of the crack it was assumed that the edges IO’ (h) are given by the 
equations x2 = +hy, (hK1xl) with smooth functions. Of course, smoothness is not essential and the 
structure of the boundary can be more complex. For example, everything that has been said remains 
valid for a devloping crack that periodically produces little offshoots. 

The formulation of the problems on a winding crack is taken from the paper [1.5] presented at the 
6th All-Union Conference on “Mixed Problems in the Mechanics of Deformable Bodies”. 
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